1. 导入依赖包
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
2. 导入数据集
iris = load_iris()
3. 将数据集切分成训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target,
random_state=666)
4. 对数据进行标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
5. 定义模型
estimator = KNeighborsClassifier(n_neighbors=3)
6. 训练模型
estimator.fit(x_train, y_train)
7. 打印预测结果
y_predict = estimator.predict(x_test)
print(y_predict)
8. 打印准确率
score = estimator.score(x_test, y_test)
print(score)
案例二:添加网格搜索
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
iris = load_iris()
x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target,
random_state=22)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
estimator = KNeighborsClassifier()
设置网格搜索的可选参数
param_dict = {'n_neighbors': [1,3,5,7,9,11]}
设置为10折交叉验证
estimator = GridSearchCV(estimator, param_grid=param_dict, cv=10)
estimator.fit(x_train, y_train)
y_predict = estimator.predict(x_test)
打印最佳得分
score = estimator.score(x_test, y_test)
print(score)
打印最佳参数、最佳得分、最佳模型、参数列表
print(estimator.best_params_)
print(estimator.best_score_)
print(estimator.best_estimator_)
print(estimator.cv_results_)
转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 2621041184@qq.com