1. 导入依赖包
import torch
from torch import nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
2. 加载数据并预处理
data = pd.read_csv('./data/Income.csv')
X = torch.from_numpy(data.Education.values.reshape(-1, 1).astype(np.float32))
Y = torch.from_numpy(data.Income.values.reshape(-1, 1).astype(np.float32))
3. 初始化权重和偏置
w = torch.randn(1, requires_grad=True)
b = torch.zeros(1, requires_grad=True)
4. 定义学习率
learning_rate = 0.0001
5. 反向传播更新参数
for epoch in range(10000):
for x, y in zip(X, Y):
y_pred = torch.matmul(x, w) + b
loss = (y - y_pred).pow(2).mean()
if not w.grad is None:
w.grad.data.zero_()
if not b.grad is None:
b.grad.data.zero_()
loss.backward()
with torch.no_grad():
w.data -= w.grad.data * learning_rate
b.data -= b.grad.data * learning_rate
6.绘制原始数据和预测数据
plt.scatter(data.Education, data.Income)
plt.plot(X.numpy(), (X*w + b).data.numpy(), c='r')
转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 2621041184@qq.com