import cv2 as cv
import numpy as np
def clamp(pv):
if pv > 255:
return 255
if pv < 0:
return 0
else:
return pv
def gaussian_noise(image):
h, w, c = image.shape
for row in range(h):
for col in range(w):
s = np.random.normal(0, 20, 3)
b = image[row, col, 0] # blue
g = image[row, col, 1] # green
r = image[row, col, 2] # red
image[row, col, 0] = clamp(b + s[0])
image[row, col, 1] = clamp(g + s[1])
image[row, col, 2] = clamp(r + s[2])
cv.imshow('noise image', image)
src = cv.imread('./0.png') # blue, green, red
cv.namedWindow('input image', cv.WINDOW_AUTOSIZE)
cv.imshow('input image', src)
t1 = cv.getTickCount()
gaussian_noise(src)
t2 = cv.getTickCount()
time = (t2 - t1) / cv.getTickFrequency()
print('time count: {}'.format(time * 1000))
dst = cv.GaussianBlur(src, (5, 5), 0)
cv.imshow('Gaussian Blur', dst)
cv.waitKey(0)
cv.destroyAllWindows()
转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 2621041184@qq.com