直线检测

import cv2 as cv
import numpy as np


def line_detection(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    edges = cv.Canny(gray, 50, 150, apertureSize=3)
    lines = cv.HoughLines(edges, 1, np.pi / 180, 200)
    for line in lines:
        print(type(lines))
        rho, theta = line[0]
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a * rho
        y0 = a * rho
        x1 = int(x0 + 1000 * (-b))
        y1 = int(y0 + 1000 * (a))
        x2 = int(x0 - 1000 * (-b))
        y2 = int(y0 - 1000 * (a))
        cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
    cv.imshow('image-lines', image)

def line_detect_possible_demo(image):
    gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
    edges = cv.Canny(gray, 50, 150, apertureSize=3)
    lines = cv.HoughLinesP(edges,1,np.pi/180,100,minLineLength=50,maxLineGap=10)
    for line in lines:
        print(type(line))
        x1, y1, x2, y2 = line[0]
        cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
    cv.imshow('line_detect_possible_demo', image)


src = cv.imread('./11.png')  # blue, green, red
cv.namedWindow('input image', cv.WINDOW_AUTOSIZE)
cv.imshow('input image', src)
# line_detection(src)
line_detect_possible_demo(src)
cv.waitKey(0)

cv.destroyAllWindows()

转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 2621041184@qq.com