import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
def equalHist_demo(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
dst = cv.equalizeHist(gray)
cv.imshow('equalHist_demo', dst)
def clahe_demo(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
clahe = cv.createCLAHE(clipLimit=5.0, tileGridSize=(8, 8))
dst = clahe.apply(gray)
cv.imshow('clahe_demo', dst)
def create_rgb_hist(image):
h,w, c = image.shape
rgbHist = np.zeros([16*16*16, 1], np.float32)
bsize = 256 / 16
for row in range(h):
for col in range(w):
b = image[row, col, 0]
g = image[row, col, 1]
r = image[row, col, 2]
index = (b/ bsize)*16*16 + np.int(g/bsize)*16 + np.int(r/bsize)
rgbHist[np.int(index), 0] += 1
return rgbHist
def hist_compare(image1, image2):
hist1 = create_rgb_hist(image1)
hist2 = create_rgb_hist(image2)
match1 = cv.compareHist(hist1,hist2, cv.HISTCMP_BHATTACHARYYA)
match2 = cv.compareHist(hist1, hist2, cv.HISTCMP_CORREL)
match3 = cv.compareHist(hist1, hist2, cv.HISTCMP_CHISQR)
print('巴氏距离:{}, 相关性:{}, 卡方:{}'.format(match1, match2, match3))
src = cv.imread('./5.jpg') # blue, green, red
cv.namedWindow('input image', cv.WINDOW_AUTOSIZE)
# cv.imshow('input image', src)
# equalHist_demo(src)
image1 = cv.imread('1.jpg')
image2 = cv.imread('2.jpg')
cv.imshow('image1', image1)
cv.imshow('image2', image2)
hist_compare(image1, image2)
clahe_demo(src)
cv.waitKey(0)
cv.destroyAllWindows()
转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 2621041184@qq.com