import cv2 as cv
import numpy as np
def measure_object(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
# ret,binary=cv.threshold(gray,0,255,cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
print('threshold value: {}'.format(ret))
cv.imshow('binary image', binary)
dst = cv.cvtColor(binary,cv.COLOR_GRAY2BGR)
contours, hireachy = cv.findContours(binary, cv.RETR_EXTERNAL,
cv.CHAIN_APPROX_SIMPLE)
for i, contour in enumerate(contours):
area = cv.contourArea(contour)
x, y, w, h = cv.boundingRect(contour)
rate = min(w, h) / max(w, h)
print('rectangle rate: {}'.format(rate))
mm = cv.moments(contour)
print(type(mm))
cx = mm['m10'] / mm['m00']
cy = mm['m01'] / mm['m00']
cv.circle(dst, (np.int(cx), np.int(cy)), 3, (0, 255, 255), -1)
# cv.rectangle(image, (x,y), (x+w, y+h), (0, 0,255), 2)
print('contour area: {}', area)
appprocCurve = cv.approxPolyDP(contour, 4, True)
print(appprocCurve.shape)
if appprocCurve.shape[0] > 6:
cv.drawContours(dst, contours, i, (0, 255, 0), 2)
if appprocCurve.shape[0] == 4:
cv.drawContours(dst, contours, i, (0, 0, 255), 2)
if appprocCurve.shape[0] == 3:
cv.drawContours(dst, contours, i, (255, 0, 0), 2)
cv.imshow('measure-contours', dst)
src = cv.imread('./13.png') # blue, green, red
cv.namedWindow('input image', cv.WINDOW_AUTOSIZE)
cv.imshow('input image', src)
measure_object(src)
cv.waitKey(0)
cv.destroyAllWindows()
转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 2621041184@qq.com